
Weather News

project report for ICS 624: Advanced Data Management,

Jacob Rosen

December 8th, 2006

Table of Contents
1. Introduction...2

1.a. Project Context...2
1.b. Anticipated System Users..2

2. English Queries...2
3. Semantic Data Model...3

3.a. Entities..3
3.b. Attributes..4

• Semantic..4
• Context..5
• Structural...5

4. MDB Implementation Plan..6
4.a. Multimedia Objects..7
4.b. Complex Attribute Types...8
4.c. Functions..9
4.d. Indexes...10

5. SQL Information Queries..10
5.a. SQL Query 1..10

• Query 1 Discussion...10
• Query 1 Optimization..11

5.b. SQL Query 2..11
• Query 2 Discussion...11
• Query 2 Optimization ...12

5.c. SQL Query 3..12
• Query 3 Discussion...13
• Query 3 Optimization..13

6. Evaluation of OR-DBMS...13
7. References..14
8. Appendixes...15

8.a. Appendix A: Full Graphic Models...15
8.b. Appendix B: Attribute Lists...16

• Multimedia Objects...16
• Other Entities...16
• Relations..17

8.c. Appendix C: Create Table Definitions...17

pakelona
Pencil

Weather News Jacob Rosen

1. Introduction

1.a. Project Context

The mandated context for this assignment is to be drawn from some topic area within a news
agency. The application area within a news agency that I am using for my project is weather.

Most major news agencies have a department or section that deals with weather. The
implementation of weather for on-line news agencies varies, but there are many possibilities for
multiple and multimedia usage within this field. As my experience with weather information (and
also with creating databases) is quite limited, I have tried to keep my model relatively simple,
however, I have tried to include major facets of weather news such as forecasts, statistics, and
weather related news articles.

The database will require someone to input daily weather statistics, forecast statistics, and any new
media objects, all of which will come from the news agency. It also requires someone to input
metadata about the media objects and maintain the controlled vocabulary.

1.b. Anticipated System Users

One main user of the site is a person that wants to know the quality of the weather. These people
will use the site often, and will mostly be interested in the current (or near future) weather quality
or weather occurrences for specific places. We can refer to this group as general users.

A second user group are persons conducting some sort of research. These people could be looking
for weather patterns in different areas, or articles about specific weather occurrences. They might
also be looking for specific images or video footage. We can refer to this group as researchers.

2. English Queries
1. What was yesterday's high temperature in Honolulu?

2. Find me a chart showing the average temperature for Atlanta by month?

3. Find news articles about “category 5 hurricanes” in Hawai'i.

4. Find images showing fishing vessels in storms.

5. Show me video footage of a hurricane.

6. Retrieve pictures with the subject storms that appear in articles published after 2004.

7. Retrieve hurricane-related articles with pictures of oceans, along with the dates the articles

12-8-06 2

pakelona
Pencil

Weather News Jacob Rosen

were written and the language they were written in.

3. Semantic Data Model

3.a. Entities

Based on the information requirements as represented in the English Queries, I determined that the
main entities within the system would be locations and what I call weather observations.

In order to be able to store and retrieve weather information about specific locations, I created a
location entity type (which consists of a city, state, and geographic point). This has an entity type
of daily_weather, in which will be recorded daily weather statistics. This will function as an
archival database; there will be a separate entry for each day to make for easy manipulation of
statistical information. The entity type location will also have a binary relationship with the entity
type forecast, each of which might provide forecasts for multiple cities for multiple days.

The entity type weather_observation includes both articles (a webpage written in PHP that

12-8-06 3

pakelona
Pencil

Weather News Jacob Rosen

includes calls to multiple media objects), as well as the individual components (ie. image and text)
that make up the article. There is a classification hierarchy in which the different media types
inherit the attributes and methods defined for the superclass weather_observation. The
participation constraint is total and overlapping, as image and chart will form a join operation to
create the shared subclass chart_image. The classification hierarchy allows searching for (and
reuse of) specific types of images or video. The multiple media articles (the entity type article) are
able to reference their various media components by use of the unary relationship includes.

In addition to location and weather_observation there is also the entity type topic. This will be a
selected and defined set of controlled vocabulary that can be used to describe weather
observations. Those three entity types will be related in a ternary associative relationship, in which
multiple locations or topics can be assigned to different multiple media articles or individual media
components.

There is also the entity type contributor. This refers to people who are responsible for the
creation of the media objects (ie. authors, photographers, meteorologists), and is related to
weather_observation in a binary relationship. The contributor type has a weak entity
relationship to contract, which refers to the contract the contributor has with the news agency.

Along with location, contributor is the parent super-class of of the category entity type
local_expert. local_expert represents a contributor to the news agency that has been designated
the expert in a specific location.

3.b. Attributes

The basis for the metadata of the media objects is a set of slightly modified Dublin Core elements,
which are represented in the model as follows.

Semantic (metadata that characterize the subject matter of the document)

 dc.Title
Represented as an attribute “title” of the entity type weather_observation.

 dc.Subject
Represented by the independent entity type topic and the associative relationship type
is_related_to.

 dc.Description
Represented as an attribute “summary” of the entity type weather_observation.

 dc.Coverage

12-8-06 4

pakelona
Rectangle

Weather News Jacob Rosen

Represented by the independent entity type location and the associative relationship type
is_related_to.

Context (metadata that describe relationships to external objects)

 dc.Contributor
Represented as an entity contributor and the associative relationship type contributes_to.

 dc.Date
Represented as an attribute “date” of the entity type weather_observation.

 dc.Relation
Represented by the associative relationship type includes and the entity type
weather_observation.

Structural (metadata that describe the internal structure and presentation layout
for the media object)

 dc.Format
Represented as an attribute “format” of the entity type weather_observation.

 dc.Language
Represented as an attribute “language” of entity type text.

 dc.Identifier
Represented as an attribute “id” of the entity type weather_observation.

Keywords will be extracted from the “text” attribute of the text entity type, along with words from
the “title” and “summary” in order to enable full text search. In addition, there will be a text_index
of keywords created on all weather observations on the attributes “title” and “summary”.
Attributes such as publisher are not included, as all of the articles will come from inside the news
agency. The contributor attribute is used for instances when credit needs to be given, and will
subsume the usual usage of the Dublin Core element creator.

A note about the article entity. This will include a <text> attribute called “webpage”. This will be
a dynamic webpage written in PHP, which is a server side scripting language that allows the
inclusion of SQL queries. Thus, an article's webpage will include SQL queries to the individual
media components that constitute it and have been specified in the includes relationship.

12-8-06 5

pakelona
Rectangle

Weather News Jacob Rosen

4. MDB Implementation Plan
The media objects will have a hierarchy, with the different types of objects inheriting attributes
from weather_observation. The participation will be total, as all weather observations will be a
subclass entity type—either the composite article (article) or one of the component parts (text,
image, video, chart, chart_image). Each subclass entity will inherent attributes from
weather_observation, along with attributes for the specific type (“webpage” for article; “text” for
text, “image” for image, etc.). The composite articles will be related to their component parts
through the relationship includes. Each row in the relationship table will have an article id
number and the id of number of a media entity that it is related to. This structure will help with
locating articles that satisfy queries that call for specific attributes on one of the included media
entities during the information retrieval stage, as well as enabling searching that returns individual
media objects themselves.

After developing my information requirements, I concluded that location is another one of the
primary entities in a weather system. To keep it simple, the location entity will have as attributes a
geographical point, a city name, and a state name. Treating topic as an entity enables me to
develop a controlled vocabulary of common weather subjects and terms that will make
categorizing and searching easier.

The is_related_to relationship, which connects a media object to related topics and locations, along
with the relevant attribute indexes, will help with the majority of queries that I envision. This will
be implemented as two tables, isrelatedto_location and isrelatedto_topic. There will also be term
indexes on the media objects, with only text indexed and searchable by content.

Standard attribute indexes

 unique index on isrelatedto_location (weather_observation.id) to facilitate access to
particular text objects related to particular locations.

 unique index on isrelatedto_topic (weather_observation.id) to facilitate access to
particular text objects related to particular topics.

 cluster index on isrelatedto_location (location) to facilitate access to locations related to
particular text objects.

 cluster index on isrelatedto_topic (topic.name) to facilitate access to topics related to
particular text objects.

 cluster index on ContributesTo (contributor.id) to facilitate access to media objects
worked on by particular contributors.

I could also include cluster indexes on various attributes of the media object, including date,
contributor, language, and so on, to facilitate access to objects with a specific date, contributor,

12-8-06 6

pakelona
Rectangle

Weather News Jacob Rosen

language, etc.

I also want users to be able to search by title, summary, and (full) text where available, on the
entity type weather_observation.

PostgreSQL includeds a full text search module called tsearch2. This will be used to create a
weighted index on the attributes title and summary on the relation weather_observation, as well
as another weighted index on the attributes title, summary, and text of the relation text. The search
module allows for searching within a specific field, or within multiple fields, with a ranking
function to determine the relevance of the query.

4.a. Multimedia Objects

The following statement creates the root entity type weather_observation and creates attributes
that will be inherited by all of the multimedia objects. Each object will have an id number, a title,
summary, format, date, and text_index. The primary key will be the id. This follows the Data
Model Translation as laid out in the Nordbotten text in Box 3.2.

CREATE TABLE weather_observation

(

 id serial NOT NULL,

 title varchar NOT NULL,

 summary varchar,

 format varchar,

 date date,

 text_index tsvector,

 CONSTRAINT wo_pkey PRIMARY KEY (id)

);

The following statement creates a relation for the sub-entity text and demonstrates the
implementation of hierarchical relations. The INHERITS clause will give the table attributes from
the parent weather_observation. The primary key will be created on id. The sub-entity has the
additional attributes of text (the full-text object), language (the language the text is written in), and
ftindex (a weighted location index on title, summary, and text).

12-8-06 7

pakelona
Rectangle

Weather News Jacob Rosen

CREATE TABLE text

(

 text text,

 language varchar,

 ftindex tsvector,

 CONSTRAINT text_pkey PRIMARY KEY (id)

) INHERITS (weather_observation);

The following statement creates the relation includes. This table relates the multimedia objects to
each other. This is defined by copying the primary keys from article and the weather_observation
it includes and defining them as a composite primary key for the relation. It then defines both as
foreign keys using on delete restrict.

CREATE TABLE includes

(

 aid int4 NOT NULL,

 mid int4 NOT NULL,

 CONSTRAINT inc_pkey PRIMARY KEY (aid, mid)

 CONSTRAINT inc_art_fkey FOREIGN KEY (aid)

 REFERENCES article (id) MATCH SIMPLE

 ON UPDATE RESTRICT ON DELETE RESTRICT

 CONSTRAINT inc_med_fkey FOREIGN KEY (mid)

 REFERENCES weather_observation (id) MATCH SIMPLE

 ON UPDATE RESTRICT ON DELETE RESTRICT

);

4.b. Complex Attribute Types

This creates a new data type FULLNAME that is a composite type of base data types varchar and
varchar. This user defined data type will be used in the contributor (and local expert) relations.

CREATE TYPE fullname AS

12-8-06 8

pakelona
Rectangle

Weather News Jacob Rosen

 ("first" varchar,

 "last" varchar);

This creates a new data type RESULTS that is a composite type of base data types int, text, and
real. This uses two functions that are included in the PostgreSQL tsearch2 module, headline
(displays an excerpt including the search term) and rank (numerically ranks the search), and will be
useful for returning results from an information query.

CREATE TYPE results AS (id INTEGER, headline TEXT, rank REAL);

4.c. Functions

The following statement creates a trigger that will update the index whenever a new row is added.

CREATE TRIGGER tsvectorupdate BEFORE UPDATE OR INSERT ON text

 FOR EACH ROW EXECUTE PROCEDURE tsearch2(ftindex, text);

The following creates a function that takes a text input such as hurricane and uses the full text
index to output search results that contain that term(s), ranked by relevance. It utilizes the user
defined composite data type “results” that was defined above.

CREATE FUNCTION findobjct(text) RETURNS SETOF results LANGUAGE sql AS '

 SELECT id, headline(text, q), rank(ftindex, q)

 FROM text, to_tsquery($1) AS q

 WHERE ftindex @@ q ORDER BY rank(ftindex, q) DESC';

The following creates a function that automatically inserts values into the relation text, updating
the text index vector and assigning weights.

CREATE OR REPLACE FUNCTION insert(varchar, varchar, text) RETURNS void LANGUAGE
sql AS

 'INSERT INTO text (title, summary, text, text_index)

 VALUES ($1, $2, $3, setweight(to_tsvector($1), ''B'') || setweight(to_tsvector($2), ''C'') ||

12-8-06 9

pakelona
Rectangle

Weather News Jacob Rosen

to_tsvector($3));';

4.d. Indexes

The following creates an index on the table TEXT using the full text index column.

CREATE INDEX ftindex_indx ON text USING gist(ftindex);

In PostgreSQL, CREATE TABLE / PRIMARY KEY/ FOREIGN KEY will create an implicit index
on the table's primary key or foreign key.

5. SQL Information Queries

5.a. SQL Query 1

Find news articles about “category 5 hurricanes” in Hawai'i.

SELECT a.id, a.title, a.webpage, headline(t.text, q), rank(t.ft_index, q) AS rank

FROM article a, text t, location l, isrelatedto_location r, includes i, to_tsquery('category & 5 &
hurricane') AS q

WHERE l.state = 'Hawaii' AND r.resource = a.id AND r.location = l.id

 AND i.aid = a.id AND i.mid = t.id AND t.ft_index @@ q

 AND t.text ~* 'category 5 hurricane'

ORDER BY rank DESC;

Query 1 Discussion

This query utilizes classification hierarchies and the SQL3 ability to access hierarchic structures
and know that the subclass entities (article, text, image) inherit attributes from the superclass
(weather_observation), which is not even mentioned in the query. It also uses the dot notation to
specify access paths.

The query also requires utilizing user defined types and functions (or in this case, types and

12-8-06 10

pakelona
Rectangle

Weather News Jacob Rosen

functions defined by the tsearch2 team and included in postgreSQL as a module). These appear in
the SELECT, FROM, and WHERE clauses. The type is tsvector and this is a set of terms that
appear within a given text and have been parsed through a dictionary and stemmer. The function
to_tsquery is used to query a field with type tsvector. The rank function then uses the function and
the type to produce a relevance ranking for a search term.

The query first performs a relatively much faster search on the full text index and then, with the
narrowed result set searches the text for the desired string.

Query 1 Optimization

● An optimized execution plan would begin with the clause l.state = 'Hawaii' as it performs
an operation on a single table.

● It would then execute the clause t.ft_index @@ to_tsquery('category & 5 & hurricane') as
this is another operation eliminating rows from a single table.

● Next would be the join operations to further reduce the result set. This would be the
clauses r.resource = a.id AND r.location = l.id and i.aid = a.id AND i.mid = t.id.

● Then, once the set is reduced, execute the query on text, t.text ~* '...', since it is a query on
media data that can be time consuming.

● Next the rank and headline functions as they can also be time consuming.

● Finally, order the result set by rank.

5.b. SQL Query 2

Retrieve pictures with the subject storms that appear in articles published after 2004.

SELECT i.id, i.title, i.image, a.title, a.date

FROM image i, topic t, isrelatedto_topic r, article a, includes n

WHERE t.name = 'storms' AND t.name = r.topic AND i.id = r.resource

AND a.date > '12-31-2004' AND a.id = n.aid AND i.id = n.mid

ORDER BY a.date DESC;

Query 2 Discussion

12-8-06 11

pakelona
Rectangle

Weather News Jacob Rosen

This query also makes use of classification hierarchies and inheritance. It also utilizes the indexes
automatically created with the creation of primary and foreign keys. The unique thing about this
query is that data-type and storage support for unstructured large objects is required by the query.
Along with the other attributes, it returns i.image, an image which is an unstructured large object.
In postgreSQL, the recommended data type for unstructured large binary objects is bytea.

Query 2 Optimization

● The optimal clauses to start with in this query are the clauses t.name='storms' and a.date >
'12-31-2004', as these are select operations on single tables and will eliminate unnecessary
rows from the result set.

● Next, the join clauses, t.name = r.topic AND i.id = r.resource and a.id = n.aid AND i.id =
n.mid, to further reduce the result set.

● Finally, order by date to prepare the result set for presentation.

5.c. SQL Query 3

Retrieve articles that discuss Hurricane Katrina that include pictures of oceans, along with the
dates the articles were written and the language they were written in.

SELECT tquery.id, a.title, a.webpage, a.date, tquery.language, sum(tquery.rank + iquery.rank) as
rank

FROM article a,

(SELECT a.id, t.language, rank(t.ft_index, q) as rank

 FROM article a, text t, includes, to_tsquery('hurricane & Katrina') AS q

 WHERE includes.mid = t.id AND includes.aid = a.id

 AND t.ft_index @@ q AND t.text ~* 'Hurricane Katrina') as tquery

INNER JOIN

(SELECT a.id, rank(i.text_index, q) as rank

 FROM article a, image i, includes, to_tsquery('ocean') AS q

 WHERE includes.mid = i.id AND includes.aid = a.id

 AND i.text_index @@ q) as iquery USING (id)

WHERE a.id = tquery.id

GROUP BY tquery.id, a.title, a.webpage, a.date, tquery.language

12-8-06 12

pakelona
Rectangle

Weather News Jacob Rosen

ORDER BY rank DESC, a.date DESC

;

Query 3 Discussion

This is the most complex of my SQL statements. It selects a set of articles that includes text
containing hurricane and Katrina and then performs an inner join on the article id with a set of
articles that includes images about oceans. During this, it pulls out information from the different
entities involved to satisfy the query. It takes a rank from both sub-select statements and then adds
them together in the final select using the sum() function within the statement.

As with Query 1, this query entails the ability to access hierarchical structures, user defined types,
and user defined functions.

Query 3 Optimization

● First, the operations in the first sub-select statement of the ft_index to return text rows that
contain hurricane.

● Next, the clause includes.mid = t.id AND includes.aid = a.id to reduce this SELECT set to
articles containing text that includes hurricane.

● Then the text_index clause on the second sub-select to limit the rows in the image table to
those that contain ocean.

● This should be followed by the includes.mid = i.id AND includes.aid = a.id clause to limit
this sub-select to articles that contain images about oceans.

● Next, the inner join should be performed to further reduce the result set.

● The rank function should then be performed to determine rank.

● Finally the result set should be prepared for presentation. The GROUP BY clause should
be executed to eliminate extraneous results and execute the sum() function to determine
final rank for the result this. This should be concluded by the ORDER BY clause to order
the results by rank (and subsequently by date).

6. Evaluation of OR-DBMS
The OR-DBMS I am using for my project is PostgreSQL 8.1. This is an SQL standard compliant
open source object-relational database management system that I began using at the start of the
semester. It includes support for most of the SQL3 enhancements that I wanted to implement in

12-8-06 13

pakelona
Rectangle

Weather News Jacob Rosen

the database. There are a couple of aspects that are confusing, or have sparse documentation, but
on the whole, the documentation and technical features are quite good.

I suppose a lot of the confusion I had stemmed from being generally unfamiliar database
languages. One aspect of PostgreSQL that I am still unclear about is its handling of large
unstructured objects and its data type bytea. I feel the documentation here is minimal and not
legible for someone with my user experience. This is one area where it is difficult to find
implementation examples either within the offical PostgrSQL manuals or on the wider Internet.

There are also some (acknowledged) limitations of the DBMS that are either being worked on or
will probably continue to exist due to internal structural reasons that are beyond my sphere of
knowledge. One of these comes within the inheritance feature. While attributes are inherited from
parent to child, primary keys and foreign keys are not. I have found this to be a frustrating feature
in several test databases I have implemented, and either necessitate the creation of a lot more tables
or completely rethinking the data model. Another limitation I noticed is the implementation of
multivalued attributes and composite attributes. Each are a bit messy when it comes to SELECT's,
UPDATE's, and INSERT's. I found multivalued attributes, supported with arrays, a bit too
frustrating to use.

Still, there some great aspects, such as user-defined types, user-created functions, inheritance, and
a full-text indexing module. The CREATE statements I have included give an example of these.
The documentation and tutorials about these is very clear and the features are relatively simple to
use. Another aspect of the DBMS that I like is the automatic optimization, described in detail in
the manuals, along with good tips on how to structure your statements.

7. References
Lu, Guojun. Multimedia Database Management Systems . Artech House: Boston/London,
1999.

Nordbotten, J.C. Multimedia Information Retrieval Systems. 2006
<http://nordbotten.com/ADM/ADM_book>.

The PostgreSQL Global Development Group. PostgreSQL 8.1.0 Documentation. The
PostgreSQL Global Development Group: 1996-2005.

12-8-06 14

pakelona
Rectangle

http://nordbotten.com/ADM/ADM_book
http://nordbotten.com/ADM/ADM_book

Weather News Jacob Rosen

8. Appendixes

8.a. Appendix A: Full Graphic Models

12-8-06 15

pakelona
Rectangle

Weather News Jacob Rosen

8.b. Appendix B: Attribute Lists

Multimedia Objects

|--weather_observation

|--id <int>

|--title <varchar>

|--summary <varchar>

|--format <varchar>

|--date <date>

|--text_index <tsvector>

|--article

|--webpage <text>

|--text

|--text <text>

|--language <varchar>

|--ft_index <tsvector>

|--video

|--video <bytea>

|--image

|--image <bytea>

|--chart

|--(1,n) column_name <varchar[]>

|--(1,n) data_array <float[]>

|--chart_image

|--id

|--type <varchar>

Other Entities

|--topic

|--name <varchar>

|--description <varchar>

|--location

|--id <int>

|--geo_loc <point>

|--city <varchar>

|--state <varchar>

|--locex_id_pkey <int>

|--daily_weather

|--id <int>

|--min_temp <int>

|--max_temp <int>

|--precip <float>

|--monthly_precip F<float>

|--forecast

|--date_given <date>

|--city <varchar>

|--(1,n) date_fcast <date[]>

|--(1,n) min_temp <int[]>

|--(1,n) max_temp <int[]>

|--(1,n) outlook <outlook[]>

12-8-06 16

pakelona
Rectangle

Weather News Jacob Rosen

|--contributor

|--id <int>

|--name <fullname>

|--first <varchar>

|--last <varchar>

|--locex_id_pkey <int>

|--contract

|--id <int>

|--date <date>

|--salary <float>

|--local_expert

|--id <int>

Relations

|--isrelatedto_location

|--resource <int>

|--location <int>

|--isrelatedto_topic

|--resource <int>

|--topic <varchar>

|--includes

|--aid <int>

|--mid <int>

8.c. Appendix C: Create Table Definitions

CREATE TABLE weather_observation

(

 id serial NOT NULL,

 title varchar NOT NULL,

 summary varchar,

 format varchar,

 date date,

 text_index tsvector,

 CONSTRAINT wo_pkey PRIMARY KEY (id)

);

CREATE TABLE text

(

12-8-06 17

pakelona
Rectangle

Weather News Jacob Rosen

 text text,

 language varchar,

 ftindex tsvector,

 CONSTRAINT text_pkey PRIMARY KEY (id)

) INHERITS (weather_observation);

CREATE TABLE includes

(

 aid int4 NOT NULL,

 mid int4 NOT NULL,

 CONSTRAINT inc_pkey PRIMARY KEY (aid, mid)

 CONSTRAINT inc_art_fkey FOREIGN KEY (aid)

 REFERENCES article (id) MATCH SIMPLE

 ON UPDATE RESTRICT ON DELETE RESTRICT

 CONSTRAINT inc_med_fkey FOREIGN KEY (mid)

 REFERENCES weather_observation (id) MATCH SIMPLE

 ON UPDATE RESTRICT ON DELETE RESTRICT

);

CREATE TYPE fullname AS

 ("first" varchar,

 "last" varchar);

CREATE TYPE results AS

 (id INTEGER,

 headline TEXT,

 rank REAL);

12-8-06 18

pakelona
Rectangle

Weather News Jacob Rosen

CREATE TRIGGER tsvectorupdate BEFORE UPDATE OR INSERT ON text

 FOR EACH ROW EXECUTE PROCEDURE tsearch2(ftindex, text);

CREATE FUNCTION findobjct(text) RETURNS SETOF results LANGUAGE sql AS '

 SELECT id, headline(text, q), rank(ftindex, q)

 FROM text, to_tsquery($1) AS q

 WHERE ftindex @@ q ORDER BY rank(ftindex, q) DESC';

CREATE OR REPLACE FUNCTION insert(varchar, varchar, text) RETURNS void LANGUAGE
sql AS

 'INSERT INTO text (title, summary, text, text_index)

 VALUES ($1, $2, $3, setweight(to_tsvector($1), ''B'') || setweight(to_tsvector($2), ''C'') ||
to_tsvector($3));';

CREATE INDEX ftindex_indx ON text USING gist(ftindex);

12-8-06 19

pakelona
Rectangle

	1. Introduction
	1.a. Project Context
	1.b. Anticipated System Users

	2. English Queries
	3. Semantic Data Model
	3.a. Entities
	3.b. Attributes
	Semantic (metadata that characterize the subject matter of the document)
	Context (metadata that describe relationships to external objects)
	Structural (metadata that describe the internal structure and presentation layout for the media object)

	4. MDB Implementation Plan
	Standard attribute indexes
	4.a. Multimedia Objects
	4.b. Complex Attribute Types
	4.c. Functions
	4.d. Indexes

	5. SQL Information Queries
	5.a. SQL Query 1
	Query 1 Discussion
	Query 1 Optimization

	5.b. SQL Query 2
	Query 2 Discussion
	Query 2 Optimization

	5.c. SQL Query 3
	Query 3 Discussion
	Query 3 Optimization

	6. Evaluation of OR-DBMS
	7. References
	8. Appendixes
	8.a. Appendix A: Full Graphic Models
	8.b. Appendix B: Attribute Lists
	Multimedia Objects
	Other Entities
	Relations

	8.c. Appendix C: Create Table Definitions

